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Abstract: The integration of renewable energy with explosive growth in scale, inherently intermittent and stochastic, poses severe 

challenges to grid dispatch, while contemporary artificial intelligence technologies, rising in parallel with computational power, may serve 

as potent tools to address complex grid control issues. Particularly, reinforcement learning-based methods have been widely utilized and 

have achieved certain successes in both theoretical research and practical applications in grid dispatch. However, deploying reinforcement 

learning models into real-world grid dispatch tasks requires ensuring their robustness against sudden disturbances, an area that requires 

further investigation. In this paper, we propose a method of adversarial training that integrates historical information encoding. 

Specifically, we employ adversarial Markov policies to learn attack strategies, then utilize adversarial training methods to enhance the 

model's robustness against adversary attacks. Building upon this, we utilize GTrXL (a variant of Transformer) to encode current and 

historical state information, enabling the model to make more robust decisions over longer observation horizons. We experimented with 

the proposed method in the IEEE-14 environment provided by the L2RPN competition and compared it with the algorithms of the 

competition's award-winning participants, verifying the effectiveness of our approach. 

Keywords: Grid dispatch, Reinforcement learning, Adversarial training, Historical information encoding.  

1. Introduction 

Grid dispatch is the process of monitoring, controlling, and 

optimizing the operation of the power system to ensure the 

safety, stability, and cost-effectiveness of electricity supply. 

With the widespread integration of renewable energy into the 

grid and the surge in residential electricity demand, ensuring 

the secure operation of the power system has become a 

significant challenge. From the perspective of energy supply, 

renewable energy generation is affected by factors such as 

weather and environment, exhibiting obvious randomness, 

intermittency, and low dispatchability[1]. From the 

perspective of energy demand, electric vehicles and other 

devices with distinct charging demand characteristics further 

exacerbate the uncertainty and variability of the grid[2]. 

Traditional manual scheduling methods are no longer 

sufficient to meet the needs of grid dispatch under dynamic 

changes in supply and fluctuating demand conditions, hence 

there is an expectation to seek a more robust grid dispatch 

method. 

Some researchers have attempted to optimize grid dispatch 

from the perspective of network structure. Baranwal proposed 

a distributed control architecture for coordinating the 

operation of multiple DC-DC converters in DC microgrids to 

achieve stable voltage regulation and power sharing[3]. 

Mohsen Hamzeh introduced a novel method that selects the 

optimal configuration of power network systems adapted to 

network protocols through graph theory and education-based 

optimization algorithms to reduce expected energy non-

supply and achieve significant reliability improvements in 

practical cases[4]. However, these hardware modifications are 

not only resource-intensive but also have certain limitations 

for specific issues. Conversely, model-based approaches 

transform grid control problems into constraint problems[5]-

[6], offering a solid theoretical foundation. They consume 

fewer resources compared to network structure modifications 

and are easier to scale. However, the increasingly complex 

grid structures and uncertainties in grid operations make it 

impossible to accurately describe and construct highly 

nonlinear, complex system models using existing 

mathematical tools. 

In recent years, with the rapid development of artificial 

intelligence technology, reinforcement learning (RL) as one 

of its branches has made significant achievements in complex 

control fields[7]-[9]. The AlphaGo developed by the 

DeepMind team based on deep reinforcement learning (DRL) 

technology defeated the world champion in the 2016 Go 

competition[7]. According to researchers' estimates, the 

number of legal Go game positions far exceeds the number of 

atoms in the observable universe, demonstrating the immense 

complexity and variability of Go. On other fronts, the Google 

X team utilized DRL to train robotic arms for automatic door 

opening and item retrieval[8], while the Uber team used DRL 

to train game characters to drive vehicles in real 

environments[9]. These studies illustrate the significant 

advantages of reinforcement learning in solving complex 

control problems, prompting some researchers to attempt its 

application in the field of grid dispatch, including photovoltaic 

and energy storage control[10], voltage and current 
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control[11]-[12], and grid topology control[13]-[14], among 

others. For more examples of reinforcement learning 

applications in power systems, refer to literature[15]. 

The above-mentioned studies demonstrate the excellent 

performance of reinforcement learning algorithms in the field 

of grid dispatch. However, as grid dispatch gradually 

transitions towards intelligence, it also brings certain risks—

smart grids may face threats of malicious attacks. For example, 

in 2015, the information system of a Ukrainian energy 

distribution company was hacked, leading to a power outage 

lasting up to 6 hours and affecting power supply services for 

over 230,000 people[16]. On the other hand, studies have 

shown that reinforcement learning is susceptible to noise 

interference. Even a minor disturbance in the state space can 

lead to suboptimal actions from a fully optimized 

reinforcement learning agent[17]. As the power grid system is 

a critical infrastructure affecting people's livelihoods, 

researching robust dispatch methods under uncertain 

disturbances has become a top priority in current grid 

optimization and dispatch tasks. 

In the field of reinforcement learning, researchers have 

classified uncertain attacks on reinforcement learning into 

four categories based on their components[18], with the 

primary focus being on adding adversarial perturbations to the 

state space. A small portion involves perturbing the reward 

function and state space, and different defense methods are 

employed against different types of attacks. Kos and Song 

used random noise and FGSM to generate adversarial inputs 

to train their models[19], demonstrating their algorithm's 

resistance to attacks of the same type. Pinto proposed Robust 

Adversarial Reinforcement Learning (RARL) as a method for 

robust policy learning in the presence of adversaries, where 

adversaries have specifically set rewards aimed at finding the 

state trajectory with the lowest reward[20]. Wang et al. 

pointed out that reward functions are susceptible to three types 

of noise[21]: intrinsic noise, application-specific noise, and 

adversarial noise, and they proposed a reward confusion 

matrix to generate rewards. Smirnova et al. proposed a 

distributed robust policy generation with dynamic risk 

criteria[22], which can prevent agents from taking suboptimal 

actions based on the risk criteria. 

In the field of power systems, researchers are also dedicated 

to studying robust grid dispatch. The L2RPN grid dispatch 

competition, jointly organized by the French grid operator and 

the Electric Power Research Institute, presented two tracks in 

2020. One track aimed to increase the time of stable grid 

operation as much as possible in the presence of external 

attacks and uncertainties. The champion team, Baidu, utilized 

a search-based planning algorithm to filter out illegal actions 

by searching the state space in advance[23], ensuring that the 

actions taken strictly adhere to the constraints. The runner-up 

team proposed a framework of "teacher-expert-lower-grade 

student-upper-grade student". The teacher and expert used a 

greedy strategy to enumerate all possible dispatch operations 

and filter out some low-frequency operations to narrow the 

action space. The lower-grade student learned by imitation to 

mimic the expert's strategy, while the upper-grade student 

learned from the lower-grade student's Critic network but 

focused more on long-term rewards, thus achieving better 

performance. Apart from the competition participants, Zeng et 

al. focused on research on false data injection that can bypass 

adverse data monitoring mechanisms in power systems[24]. 

Xu proposed a graph attention-based reinforcement learning 

method to achieve robust active power correction control[25],  

 
Figure 1 Adversary training frame 

while Pan proposed using adversary agents for adversarial 

training to enhance the robustness of grid dispatch 

reinforcement learning models[26]. They conducted 

experiments on multiple award-winning agents and improved 

their robustness against disturbances. 

Our work, similar to Pan's, primarily focuses on studying 

the robustness of reinforcement learning agents in grid 

scheduling against unknown disturbances. We define 

disturbances such as natural disasters, human interventions, 

and unknown network attacks as adversary agents with 

properties similar to the protagonist agent but with opposite 

optimization objectives. Their goal is to minimize the 

accumulated rewards in the environment where the 

protagonist exists. We then employ adversarial training 

between the adversary and protagonist agents, where the 

protagonist aims to maximize accumulated rewards in the 

presence of the adversary, ultimately obtaining a robust model 

capable of effectively handling adversary disturbances. 

To further enhance the model's robustness, inspired by the 

work of Zhang et al[27], we attempt to break free from the 

Markovian constraints by utilizing longer historical 

information for grid scheduling decisions, as shown in Figure 

1. Previous research by Espehol et al[28]. utilized RNN and 

LSTM as memory units to provide historical state information 

to agents. However, inherent issues such as gradient vanishing, 

exploding, and difficulty in capturing long-range 

dependencies hindered their extensive application in the 

reinforcement learning domain. 

Recent related works empirically demonstrate that self-

attention architectures, such as Transformers, outperform 

traditional recursive architectures (e.g., LSTM) in various 

fields like language modeling[29], machine translation [30], 

showcasing their strong performance. This has spurred 

scholars to delve deeper into the integration of Transformers 

with reinforcement learning[31]. However, Parisotto pointed 

out that standard Transformer architectures are challenging to 

optimize and perform poorly even with complex training 

techniques when applied to reinforcement learning [32]. To 

address this, an improved Transformer architecture GTrXL 

was proposed, enhancing stability and convergence speed by 

modifying the original Transformer structure and introducing 

gating mechanisms.We utilize GTrXL as the historical state 

encoder to merge current and historical states, providing them 

to the agent as scheduling decision bases, thereby aiding in 
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making more robust decisions. Additionally, inspired by Pan's 

training techniques, we further discuss and experimentally 

verify the influence of pre-trained models and different 

adversary action spaces on adversarial training results. 

In summary, this research makes the following original 

contributions: 

(1)Building upon the use of reinforcement learning to achieve 

fundamental grid scheduling objectives, we further enhance 

the model's robustness against uncertain disturbances through 

adversarial training techniques. 

(2) By introducing the GTrXL module, we extract efficient 

and robust state representations from historical state 

information, further enhancing the robustness of the model. 

2. Grid Operation Model 

In this section, we have introduced the components of grid 

topology and the basic objectives of grid dispatch. In the next 

section, we will explain how to integrate grid dispatch tasks 

into a reinforcement learning framework and perform robust 

optimization. 

2.1   The composition of grid topology 

The topology of the power grid can be abstracted as a graph 

structure𝐺 = {𝑉, 𝐸}, where 𝐸 represents the set of power lines 

used for electricity transmission, and 𝑉 represents the set of 

substations. Typically, a substation connects to either a power 

generator or a load on one end, and to other substations on the 

other end (although there are cases where substations are 

connected on both ends). Internally, substations generally 

have a dual-bus structure. Changing the connection of power 

lines on the bus can alleviate the overload situation of a 

particular line. As shown in the figure 2, the current of power 

line 𝑦4  is 118, exceeding its thermal limit of 100. By 

modifying the bus 𝑆4 , the current of 𝑦4  is restored to its 

thermal limit. Additionally, optimization of the load on each 

line in the power grid can be achieved by adjusting the power 

output of generators and loads (referred to as redispatch). 

 
Figure 2 Redispatch 

2.2   Basic Objectives of Grid Dispatch 

In power system control tasks, in addition to ensuring the 

stable operation of the grid, operators primarily focus on 

minimizing operational costs over a certain period of time. 

Specifically, within a time period 𝑇 , each scheduling 

operation 𝑎𝑡 executed at time step 𝑡  incurs a corresponding 

cost consumption 𝐶, as shown in Equation 1. 

𝑚𝑖𝑛
𝑎𝑡

 𝐶(𝑠𝑡 , 𝑎𝑡)                       (1)   

 s.t. 𝑓𝑔𝑎(𝑎𝑡) = 0               (1a)

𝑓ℎ𝑎(𝑎𝑡) ⩽ 0                (1b)

𝑓𝑔𝑠(𝑠𝑡) = 0                 (1c)

𝑓ℎ𝑠(𝑠𝑡) ⩽ 0                 (1d)

 

Equation 1 represents the total dispatch cost 𝐶 over a period 

of time 𝑇, including topological changes and power losses, 

among others. Our objective is to find a sequence of actions 

[𝑎0, 𝑎1, … , 𝑎𝑇] that minimizes the total cost. Each scheduling 

action must satisfy certain constraints: Equation (1a) (1c) 

represents node power balance and current equations, while 

Equation (1b)(1d) represents hardware system constraints 

such as line thermal limits and node voltage limits. Although 

solving this optimization problem using mathematical 

programming can be a solution, the increasingly complex 

scale of the power grid limits the applicability of this method. 

Therefore, we employ a more powerful tool in addressing 

complex control problems reinforcement learning to solve this 

optimization problem. 

3. Robust Grid Dispatch Design 

In this section, we first define the grid dispatch model as a 

Markov Decision Process and solve it using reinforcement 

learning. Then, we enhance the robustness of the 

reinforcement learning model through adversarial training, 

specifically training adversary agents and protagonist agents. 

Finally, we further enhance the robustness of the model by 

incorporating a historical state encoder. 

3.1 Reinforcement Learning-based Grid Dispatch Model 

In the framework of reinforcement learning, we define the grid 

dispatch model as a Markov Decision Process, which can be 

represented as a 4-tuple (𝒮, 𝒜, 𝒫, 𝑅). At time step t, the agent 

receives a state vector 𝑠𝑡 ∈ 𝒮  composed of information data 

from the grid, including network topology information, active 

power of generators and loads, reactive power, current flow, 

and line thermal limits. Then, it makes a scheduling decision 

𝑎𝑡 ∈ 𝒜, such as topological modifications and redispatching 

mentioned in the previous section. The grid environment 

generates the next state 𝑠𝑡+1  based on the current state 𝑠𝑡 , 

scheduling decision at, and transition probability 𝒫: 𝒮 × 𝒜 ×
 𝒮 → ℝ. The transition probability 𝒫 is provided by the grid 

environment simulator through power flow calculation. At the 

same time, the agent receives a reward R, which is negatively 

correlated with the scheduling cost at this time step. If a power 

outage occurs, the minimum reward is obtained (usually set to 

0, while the maximum reward is 1). 

The objective of the reinforcement learning agent is to find an 

optimal policy 𝜋 that maximizes the cumulative reward. 

𝑚𝑎𝑥
𝜃

𝐽(𝜃) = 𝐸𝒫,𝜋 [∑ 𝑅(𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=1

]

 s.t. 𝑎𝑡 = 𝜋𝜃(𝑠𝑡)

𝑎 ∈ 𝒜, 𝑠 ∈ 𝑆

(2) 

Where 𝐽(𝜃) represents the expected cumulative reward under 

the current policy. By referencing the choices of other 

participants in the competition and comparing the 

effectiveness of their algorithms, we ultimately chose the 

Proximal Policy Optimization (PPO) method based on policy 

gradients to solve the optimization problem described by the 

equation above. 
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3.2 Adversarial Training in Reinforcement Learning 

An adversarial grid dispatch environment can be represented 

as a two-player Markov game process, where the Markov 

Decision Process of this game can be expressed as a tuple 

(𝒮, 𝒜1, 𝒜2, 𝒫, 𝑅) . Here, 𝒜1 and 𝒜2 represent the action 

spaces of the protagonist agent and the adversary agent, 

respectively. It is important to note that we impose certain 

constraints on the adversary's action space (specific reasons 

and details will be explained in subsequent experiments). 𝒜2 

includes only a subset of operable lines. 𝒫: 𝒮 × 𝒜1 × 𝒜2 ×
 𝒮 → ℝ represents the transition probability, and 𝑅: 𝒮 × 𝒜1 ×
𝒜2 → ℝ denotes the rewards for both agents. 

Training of the Adversary Agent: For a protagonist agent's 

policy 𝜋𝜃
𝑝𝑟𝑜

, we aim to learn an adversary agent's policy 𝜋𝜃′
𝑎𝑑𝑣, 

whose objective is to alter the normal grid topology to induce 

an unsafe state in the grid system. In this state, the protagonist 

agent lacks experience in handling such situations and 

struggles to make appropriate scheduling decisions, resulting 

in power outages. The protagonist agent receives fewer 

cumulative rewards under the influence of the adversary. 

𝑚𝑖𝑛
𝜃′

𝐽(𝜃, 𝜃′)

 s.t. 𝑠𝑡+1 ∼ 𝒫( 𝑠𝑡+1 ∣∣ 𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡
′ )

𝑎𝑡
′ = 𝜋𝜃′

𝑎𝑑𝑣(𝑠𝑡), 𝑎𝑡 =  𝜋𝜃
𝑝𝑟𝑜(𝑠𝑡) fixed 𝜃

𝑎′ ∈ 𝒜2, 𝑎 ∈ 𝒜1, 𝑠 ∈ 𝒮

(3) 

With reference to Pan's adversary design, all adversary attack 

methods in this paper are black-box attacks, meaning the 

adversary does not have knowledge of the policy of the 

protagonist agent being attacked. Specifically, we use 

adversary 𝑎𝑑𝑣𝑥 for adversarial training to obtain a robust 

protagonist 𝑝𝑟𝑜𝑥 , and then use adversary 𝑎𝑑𝑣𝑦  which has no 

training interaction with 𝑝𝑟𝑜𝑥 to test the robustness of 𝑝𝑟𝑜𝑥 . 

This design reflects the reality where adversaries often cannot 

obtain the true scheduling policy.  

Training of the Robust Protagonist Agent: We have 

obtained an adversary agent with significant perturbation 

capabilities using the above method, which represents 

unknown disturbances in reality, whether natural or human-

made. We aim to enhance the protagonist agent's robustness 

to unknown disturbances by allowing it to interact with 

adversarial scenarios through adversarial training. The 

optimization problem for the robust agent can be represented 

by equation 4: 

max  
θ

 𝐽(𝜃, 𝜃′) (4) 

The process of interaction between the protagonist and 

adversary agents in the environment and collecting 

trajectories is as follows: 

1. The adversary agent observes the state 𝑠𝑡−1 and takes an 

interference action 𝑎′. The environment  updates to state 𝑠𝑡 

based on the transition probability 𝒫. 

2. The protagonist agent observes the state 𝑠𝑡  and takes a 

scheduling action 𝑎𝑡 , receiving feedback reward 𝑟𝑡 . The 

environment updates to state 𝑠𝑡+1  based on the transition 

probability 𝒫. 

3. Collecting trajectory information (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). 

3.3 Historical State Information Encoder 

To further enhance the model's robustness, we attempt to 

overcome the limitations of Markovianity and utilize GTrXL 

(a variant of Transformer) as the encoder for historical state 

information of the grid scheduling agent. The structure of a 

single module is depicted in Figure 3 (right). Compared to the 

original Transformer structure shown in Figure 3 (left), 

GTrXL alters the sequence of Layer-Norm in the module. This 

adjustment enables it to achieve an identity mapping from the 

input of the first layer module to the output of the last layer 

module, allowing the encoded state to contain more 

information about the current moment, aiding the model in  

 
Figure 3 Compare Transformer and GTrXL 

learning Markovian policies before the attention mechanism 

is fully optimized during the initial training stages. 

Additionally, GTrXL introduces a Gating Layer, which 

controls information flow using gating mechanisms, further 

enhancing the model's performance and stability. The GTrXL 

single-layer module can be described by the following 

equation 5:  

𝑌
(𝑙)

= RMHA (𝐿𝑁([𝑆𝐺(𝑀(𝑙−1)), 𝐸(𝑙−1)]))

𝑌(𝑙) = 𝑔𝑀𝐻𝐴
(𝑙)

(𝐸(𝑙−1), Re 𝐿𝑈 (𝑌
(𝑙)

))

𝐸
(𝑙)

= 𝑓(𝑙) (𝐿𝑁(𝑌(𝑙)))

𝐸(𝑙) = 𝑔𝑀𝐿𝑃
(𝑙)

(𝑌(𝑙), Re 𝐿𝑈 (𝐸
(𝑙)

))

(5) 

Where 𝑙 ∈  [0, 𝐿] represents the index of the module layer, 

𝐸 represents the input of the current layer, which is also the 

output of the previous layer. 𝑀(𝑙) ∈  ℝ𝑇 ×𝐷  represents a 

tensor used to store historical state information, and 𝑆𝐺 

denotes the stop-gradient function. 𝐿𝑁  and 𝑅𝑀𝐻𝐴  denote 

layer normalization and multi-head attention layers, 

respectively. 𝑔𝑀𝐻𝐴  and 𝑔𝑀𝐿𝑃  represent two gated recurrent 

units, and 𝑓 denotes a multi-layer perceptron (MLP). 

4. Experiment 

Finally, we validated the effectiveness of our proposed 

method through experiments. We first describe our 

experimental setup. Then, through comparative experiments, 

we demonstrate the effectiveness of our algorithm. 

Additionally, through ablation experiments, we illustrate the 

impact of historical information encoding and pre-training 

models on adversarial training results. 

4.1   Experimental Setup 

Experimental Environment:We utilized the IEEE-14 power 

grid as the experimental environment. This power grid 

environment comprises multiple scenarios, with each scenario 

specifying parameter variations for power plants and loads 
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during simulation. Each scenario has a duration of 864 time 

steps, with each time step approximately equivalent to 5 

minutes, corresponding to approximately 3 days of real-world 

power grid operation for each scenario. 

Baselines:To validate the robustness of our reinforcement 

learning agent against adversarial attacks, we compared its 

performance with publicly available code from L2RPN 

competition winners: 

1. PPO: Baseline PPO algorithm provided by RET-France, the 

official organizer of the L2RPN competition. Many 

participants in past competitions have used this algorithm as a 

baseline or built upon it for improvements. 

2. KAIST: Proposed a hierarchical policy architecture with 

posterior state representations, winning the L2RPN WCCI 

2020 competition. 

3. NANYANG: Utilized two agents for grid scheduling, each 

employing different strategies, techniques, and trained on 

random datasets. Achieved third place in the L2RPN WCCI 

2020 competition. 

Policy Evaluation: To verify the robustness of the algorithm, 

we referred to the adversary settings outlined in Pan et al. 

Specifically, they are as follows: 

1. No attack: The adversary does not launch any attacks on the 

power grid. 

2. Random attack: The adversary randomly disrupts a power 

line in the network when attacking the power grid. 

3. Learned attack:The adversary, obtained through adversarial 

training, is capable of identifying vulnerabilities in the current 

state of the power grid and targeting critical lines for 

disruption. 

we observed that disconnecting certain lines could 

immediately cause a blackout in the power grid. Therefore, we 

only allowed a subset of lines to be attacked, reflecting the 

limited strength of adversaries in reality. During the testing 

phase, to prevent the power grid environment from collapsing 

too quickly or prematurely, we configured the adversary to 

attack once every 20 steps but not immediately upon 

activation. Instead, the adversary begins attacking only after 

the protagonist agent has been running for more than 20 steps. 

Parameter Settings:The historical state encoding network 

encodes the input state into a vector of size 400. The encoded 

state is concatenated with historical information of size 864 

and fed into a single-layer GTrXL module. The attention layer 

is a single-headed attention layer, and the output dimension of 

the module is a vector of size 400, which then enters the Actor-

Critic network. The shared layer has 200 neurons, and the 

number of neurons in both the Actor and Critic networks is 

[200, 200]. 

For each model, we trained for a total of 2000 epochs. During 

each epoch, we collected data for 2000 time steps and updated 

the network using this data 10 times. Additionally, the 

discount factor γ for the model was set to 0.99, and the 

clipping parameter was set to 0.2. 

4.2   Performance Comparison 

We conducted comparative experiments to validate that our 

proposed algorithm enhances the robustness of reinforcement 

learning in grid scheduling. In the IEEE-14 power grid 

environment, we compared the performance of the standard 

PPO, KAIST, NANYANG, and our algorithm under different 

adversary scenarios. As shown in the Table 1, we first 

horizontally compared the performance of adversaries. Taking 

the PPO algorithm as an example, in an environment without 

adversaries, the algorithm could run for over 600 time steps. 

However, after introducing a random adversary, this number 

dropped to 45 steps. When replacing the random adversary 

with the learned adversary, the system couldn't withstand even 

a single attack, with the power grid collapsing immediately 

within 5 time steps after the adversary's attack. This 

demonstrates that well-trained agents are highly vulnerable 

when facing adversary attacks. Additionally, it indicates that 

we have learned a relatively stronger adversary, and engaging 

in adversarial training against stronger adversaries can yield 

more robust protagonist agents【26】.Vertically, our method 

showed a slight improvement compared to the standard PPO 

algorithm in the absence of disturbances, indicating that 

adversarial training can even enhance the model's 

performance in ordinary undisturbed environments. However, 

in environments with attacks, only our algorithm 

demonstrated some resistance against both random and 

learned adversaries, while the other three agents were quickly 

defeated by the adversaries. This highlights the robustness of 

our algorithm against disturbances from unknown adversaries. 

Table 1: Performance comparison 

 No attack Random Learned 

PPO 
reward 502.15±180.45 35.70±17.47 16.94±0.44 

step 619.2±226.14 45.1±20.77 21±0 

Kaist 
reward 690.22±78.14 114.56±27.23 35.12±14.23 

step 827.6±104.3 147.32±35.27 48.66±18.83 

NAN- 
YANG 

reward 610.32±150.74 68.36±23.39 34.27±11.28 

step 746.25±176.92 85.42±28.65 46.78±18.64 

Our 
reward 633.58±107.84 68.18±43.92 120.18±74.4 

step 787.4±133.95 85.1±53.76 152.8±93.6 

4.3   Ablation Experiment 

To validate the effectiveness of encoding historical state 

information, we conducted ablation experiments comparing 

the performance changes of models before and after the 

addition of historical state information encoding, both with 

and without adversarial training. Table 2 presents our 

comparative results. 

Table 2: Historical State Information Encoder analyze 

 No attack Random Learned 

PPO 
reward 502.15±180.45 35.70±17.47 16.94±0.44 

step 619.2±226.14 45.1±20.77 21±0 

TPPO 
reward 656.30±115.15 38.89±28.80 22.56±16.03 

step 793.0±139.35 50.9±34.22 29.6±19.46 

Adv-
PPO 

reward 560.63±132.18 45.83±22.54 93.91±68.27 

step 724.0±170.22 60.3±28.46 120.0±86.53 

Adv-
TPPO 

reward 633.58±107.84 68.18±43.92 120.18±74.4 

step 787.4±133.95 85.1±53.76 152.8±93.6 

We found that in the absence of adversarial training, TPPO 

with added historical state encoding outperforms standard 

PPO when there are no adversaries present. This indicates that 
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longer state sequences contribute to obtaining a stronger 

policy model. Additionally, from the training process graphs 

of both models (Figure 3), it can be observed that TPPO not 

only converges to a higher value but also exhibits smaller 

fluctuations after convergence, demonstrating the stabilizing 

effect of our state encoder during training.On the other hand, 

after adversarial training, the adv PPO algorithm shows a 

significant improvement when facing adversary attacks  

 
Figure 4 Validity of GTrXL module 

compared to PPO without adversarial training. It also 

demonstrates some improvement against random attacks, 

highlighting the effectiveness of our adversarial training. 

Incorporating historical state encoding into adv TPPO further 

enhances its performance, emphasizing the beneficial effect of 

historical state encoding in improving model robustness. 

5. Conclusion 

In this work, we investigated the robust grid scheduling 

problem using reinforcement learning. We employed 

adversarial training to obtain powerful perturbation 

adversaries and further developed protagonist policies robust 

to adversary disturbances. Building upon this, we extended the 

observation range of protagonist policies by incorporating a 

historical state information encoding module, aiding in 

making more robust decisions. Our proposed approach was 

compared with algorithms from competition-winning 

participants in the IEEE-14 environment provided by the 

L2RPN competition, validating the robustness of our method 

against disturbances from unknown adversaries. 

In the future, we plan to investigate the impact of minor 

perturbations in the state space on reinforcement learning 

models and integrate this into the framework presented in this 

paper. 
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